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1. Introduction 

Direct-fire projectiles are fired by line-of-sight aiming and are fired from ground-based 
platforms, helicopters, and fixed wing aircraft.  A number of conditions can cause rounds to miss 
an intended target.  These conditions include manufacturing inaccuracies of the gun tube, 
propellant, or projectile, along with variable atmospheric conditions, firing platform motion, and 
aiming errors.  With the advent of low-cost, small, rugged, microelectromechanical systems, 
dramatic reduction of dispersion for direct-fire projectiles equipped with a relatively inexpensive 
flight control system is possible.  One design concept consists of a set of controllable canards 
located near the nose of the projectile.  This report develops a unique flight control law tailored 
to the control of smart projectiles through the application of model predictive control and 
projectile linear theory.   

In model predictive control, a dynamic model of the plant is used to project the state into the 
future and subsequently use the estimated future state to determine control action.  It has been 
found to be a practical and increasingly employed control technique (1).  Currently, model 
predictive control is being applied to a wide variety of problems, spanning many different 
industries.  Mei et al. (2) studied vibration reduction of a tall building experiencing wind 
excitation using model predictive control and linear quadratic guassian control strategies.  They 
found that the model predictive control scheme performed well and was robust to uncertainty in 
building stiffness.  Tsai and Huang (3) used a model reference adaptive predictive controller for a 
variable-frequency oil-cooling machine used in concert with dynamically complex machine 
tools.  Kvaternik et al. (4) developed a generalized predictive controller for tilt rotor aeroelastic 
stability augmentation in airplane mode of flight.  Using the model predictive control strategy, 
significant increases in damping of aircraft body vibration modes were achieved in a wind tunnel 
test.  Slegers and Costello (5) applied model predictive control to a parafoil for autonomous 
delivery of a payload in battlefield conditions.  Burchett and Costello (6) used a simplified form 
of model predictive control applied to a projectile with lateral pulsejets.  Their strategy was to 
use projectile linear theory to map the projected impact point in the vertical target plane and base 
control action on projected miss distance and direction.  The key difference between their 
strategy and that detailed here is that the control strategy employed by Burchett and Costello 
calculated errors only in the target plane, while the control strategy used here considers error 
along the length of the trajectory.  In addition, the pulsejet control scheme used by Burchett and 
Costello is inherently discontinuous and can only be applied at a discrete number of points.  
Canard control, as applied in this report, is continuous and is applied for the full flight duration. 

Any model predictive control scheme is dependent upon the accuracy of the underlying dynamic 
model representing the plant.  Under most flight conditions, the equations of motion for a 
projectile in atmospheric flight can be adequately represented by a six-degree-of-freedom rigid 
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body model with externally-applied aerodynamic forces and moments.  The resulting differential 
equations have been shown to provide an accurate representation of projectile flight 
characteristics (7), though their inherent nonlinearity prevents direct use in model-predictive 
control applications.  However, a series of manipulations and simplifications of the equations of 
motion allow closed form solution of the projectile trajectory under restricted flight conditions.  
The simplified dynamic equations and their resulting solutions have become known as projectile 
linear theory.  Projectile linear theory has been extended by various authors to handle more 
sophisticated aerodynamic models (8), asymmetric mass properties (9), fluid payloads (10, 11), 
moving internal parts (12, 13), dual spin projectiles (14, 15), ascending flight (16), and lateral 
force impulses (17–20).  Aerodynamic range reduction software used in spark range facilities 
utilizes projectile linear theory in estimation of aerodynamic coefficients. 

The reported work employs model predictive control and projectile linear theory for control of a 
direct-fire projectile.  The basic projectile configuration under consideration is fin stabilized, and 
the fins are slightly canted to provide moderate roll rates during flight.  A set of controllable 
canards located near the nose of the projectile are used as the control mechanism.  The canards 
can be directed to provide swerve forces and pitch and yaw moments to the projectile.  The 
control law uses an approximate closed form solution of projectile motion to predict the states of 
the projectile over a set distance known as the prediction horizon.  Current and future control 
actions are determined based on minimizing the estimated error of future states.  It is assumed 
that sensor feedback is provided by an onboard inertial measurement unit (IMU).  Simulation 
results to establish the utility of the new model predictive flight control system design 
methodology are generated for an exemplar projectile.  Parametric trade studies are conducted 
that consider the effect of the cost function weighting matrices, prediction horizon length, state 
estimation step size, and the model update interval on impact point dispersion. 

2. Projectile Dynamic Model 

The nonlinear trajectory simulation used in this study is a standard six-degree-of-freedom model 
typically used in flight dynamic modeling of projectiles.  A schematic of the projectile 
configuration is shown in figures 1 and 2.  The six degrees of freedom are the three inertial 
components of the position vector from an inertial frame to the projectile mass center and the 
three standard Euler orientation angles.   

The equations of motion are provided in equations 1–4 (21–23).  
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In equations 1 and 2, the standard shorthand notation for trigonometric functions is used: 
sin( ) sαα ≡ , cos( ) cαα ≡ , and tan( ) tαα ≡ .  The forces in equation 3 contain contributions from 
weight (W), body aerodynamics (A), and the control canards (C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Schematic of the position coordinates of a direct-fire projectile. 
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Figure 2.  Schematic of the attitude coordinates of a direct-fire projectile. 
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The dynamic equations are expressed in a body-fixed reference frame, thus all forces acting on 
the body are expressed in the projectile reference frame.  The weight force is shown in equation 6: 
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while the aerodynamic force acting at the center of pressure of the projectile is given by equation 7: 
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The control forces are the aerodynamic drag forces created by the control canards in the 
directions perpendicular to the axis of symmetry of the projectile: 
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The applied moments about the projectile mass center contain contributions from steady 
aerodynamics (SA), unsteady aerodynamics (UA), and the control canards (C): 
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The moment components due to steady aerodynamic forces and control canard forces are 
computed with a cross product between the distance vector from the mass center to the location 
of the specific force and the force itself.  The unsteady body aerodynamic moment provides a 
damping source for projectile angular motion and is given by equation 10: 
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The mass, mass center location, and inertial properties of the projectile are all assumed to be 
constant throughout the duration of the flight.  The center of pressure location and all 
aerodynamic coefficients ( 0 , , , , ,X YPA NA DD LP MQC C C C C C ) depend on local Mach number and are 

computed during simulation using linear interpolation. 

The dynamic equations given by equations 1–4 are numerically integrated forward in time using 
a 4th order, fixed step Runge-Kutta algorithm.  Costello and Anderson (7) present correlation of 
this dynamic model against range data for a fin-stabilized projectile.   
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3. Projectile Linear Theory Trajectory Solution 

The six-degree-of-freedom rigid body projectile model shown earlier consists of 12 highly 
nonlinear differential equations for which a closed form solution has not been directly found.  
Significant work has been performed to simplify the equations of motion such that an accurate 
analytical solution can be determined.  In order to arrive at a set of analytically solvable ordinary 
linear differential equations, the following assumptions and simplifications are made: 

1. Rather than employing a reference frame fixed to the projectile body, projectile linear 
theory uses an intermediate reference frame which is aligned with the projectile axis of 
symmetry but does not roll.  Lateral translational and rotational velocity components 
described in this frame, known as the no-roll frame or the fixed plane frame, are denoted 
with a ~ superscript.  Components of the linear and angular body velocities in the fixed 
plane frame are computed from body frame components of the same vector through a 
single axis rotation transformation.  For example, the body frame components of the 
projectile mass center velocity are transformed to the fixed plane by 
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2. A change of variables is made from the velocity along the projectile axis of symmetry, u, to 
the total velocity, V.  Equations 12 and 13 relate V and u and their derivatives: 

 2 2 2 2 2 2V u v w u v w= + + = + +� � ; (12) 

 uu vv ww uu vv wwV
V V

+ + + +
= =

� �� � � � � � � �� . (13) 

3.  Dimensionless arc length, s, is used as the independent variable instead of time, t.  
Equation 14 defines dimensionless arc length: 
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Equations 15 and 16 relate time and arc length derivatives of a dummy variable ζ.  Dotted terms 
refer to time derivatives and primed terms denote arc length derivatives: 
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4. Euler pitch and yaw angles are assumed to be small so that 
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5. Aerodynamic angles of attack are small so that 
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6. The projectile is mass-balanced such that the center of gravity lies in the rotational axis of 
symmetry: 
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7. Quantities V andφ  are large compared to , , , , ,v w qθ ψ and r such that products of small 
quantities and their derivatives are negligible. 

A more detailed discussion of the development of projectile linear theory is provided by McCoy 
(21).  Application of the above stated assumptions leads to a set of coupled linear differential 
equations, with the exception that the total velocity, V , the roll rate,  p , and the pitch angle, θ , 
appear in nonlinear fashion in many of the equations.  To remedy this, the assumption is made 
that V  changes slowly with respect to the other variables and is thus considered to be constant, 

0V V= , when it appears as a coefficient in all dynamic equations except its own.  In addition, the 
roll rate and pitch angle are held constant, 0p p=  and 0θ θ= , only when they appear in 
nonlinear fashion.  The equation for the total velocity is shown as equation 20: 
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Closed form solutions to the above equations can be found, though the results are omitted here.  
A more detailed treatment of the solutions to the projectile linear theory equations can be found 
in reference (23). 

The variables 0YC  and 0ZC  are aerodynamic trim forces perpendicular to the projectile axis of 
symmetry, which are created by movement of the control canards and are treated directly as 
control inputs. 

In reality, the total velocity, V , does not remain constant for the duration of the flight;  therefore, 
the total velocity must be periodically measured throughout the trajectory and updated in the 
remaining equations.  The center of pressure location and the aerodynamic coefficients 
( 0 , , , , ,X YPA NA DD LP MQC C C C C C ), which all depend on local Mach number, must also be 

recomputed each time V  is updated.  The effect of the length of the update interval on the 
accuracy of the model was studied by Burchett et al. (19). 

4. Model-Predictive Flight Control System 

The model-predictive controller uses the linearized model of the system to propagate the states 
forward in time over an interval known as the prediction horizon ( )pH  (24).  Control action is 

based on comparison of the predicted states and a predetermined desired trajectory over the 
prediction horizon.  As the prediction step is marched forward, so too is the prediction horizon—
a process referred to as the “receding horizon principle.”  The control action at each step is 
determined by minimizing a quadratic cost function, defined as 

 ( ) ( )T TJ W Y Q W Y U RU= − − +� � . (33) 

The matrix W  contains the desired system outputs, w , over the length of the prediction horizon.  
The desired system outputs, w , at each prediction step consists of the desired x , y , and z  
coordinates at that time instant.  These values need to be loaded into the onboard computer prior 
to projectile launch. 
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The matrix Y� contains the predicted system outputs, y� , and the matrix U  contains the calculated 
system inputs, u , as follows: 
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. (35) 

Q and R are diagonal, positive semidefinite weighting matrices. 

In order to develop an expression for the predicted system outputs over the prediction horizon, 
the system is first cast in standard discrete state-space form: 

 xk+1 = A( ∆ s)xk + B( ∆ s)uk + F( ∆ s) (36) 

 yk = Cxk ,         

where the values within the matrices A , B , and F  depend on the arc length step size( ∆ s).  The 
projectile linear theory expressions shown in the previous section are used to form the state space 
matrices through a 14-step loop in the control algorithm.  In the first step, all the states and 
controls are set to zero and the solutions are evaluated over one arc length step to determine the 
values within the constant vector F .  In the next step, the first state, u� , is set equal to one, with 
the remaining states and controls still equal to zero, and the expressions are reevaluated.  By 
subtracting the values of the constants, F , the coefficients making up the first column of A  can 
be found.  This process, consisting of setting a state variable equal to one, evaluating the linear 
theory solutions, then subtracting the constant values, is repeated for each of the remaining 10 
states to fully populate the state matrix A  one column at a time.  The control matrix, B , is 
formed in exactly the same manner with all 11 states equal to zero and the controls, 0YC  and 0ZC  
alternately set equal to one.   

The desired outputs of the system are its center of mass position states (x, y, and z).  The matrix 
C  is then simply 

 
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0

C
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. (37) 
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A recursive formula can be found for ,1k j py j H+ ≤ ≤ by substituting the expression for k jx +  into 
the expression for k jy + .  The result is 

 1
1 1

j j
j j i j i

k j k k i
i i

y CA x CA Bu CA F− −
+ + −

= =

= + +∑ ∑ , (38) 

or, in matrix form, 

 CA k CAB CAFY K x K U K= + +� , (39) 

where 
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. (42) 

The cost function, J , then becomes   

 ( ) ( )T T
CA k CAB CAF CA k CAB CAFJ W K x K U K Q W K x K U K U RU= − − − − − − + . (43) 

The minimum of the cost function is determined by selecting the control input vector that forces 
the gradient of the cost function to zero: 

 ( )CA k CAFU K W K x K= − − , (44) 

where 

 ( ) 1T T
CAB CAB CABK K QK R K Q

−
= + . (45) 
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It should be noted that U  contains the optimal control inputs over the entire prediction horizon.  
At each arc length step, k , only ku  is used, which is the first element of U .  The first element of 
U  is 

 ( )1k CA k CAFu K W K x K= − − , (46) 

where 1K  consists only of the first M  rows of K.  Note that M  is defined as the number of 
control inputs which, in this application, is two ( 0YC  and 0ZC ). 

It is assumed that full-state feedback is available for use in the control law; that is, 

    x ,y , z,ψ ,θ ,φ ,u, v ,w, p,q,  and   r  are sensed or estimated by the IMU.  Furthermore, the weapon 
that fires the projectile provides a desired trajectory leading to the target.  At time = 0, the 
controller is provided with the full state of the projectile.  The total velocity, V , is calculated 
from the projectile mass center velocity states and set to 0V  in the linear model.  The linear 
model is then used to propagate the remaining 11 states forward by ∆ s.  These values are used to 
populate the A , B , and F matrices, which are sent to the MPC routine.  The MPC routine 
calculates the optimal control sequence over the length of the update interval.  When the 
projectile has covered the length of the first update interval, as well as every subsequent update 
interval, the controller is provided with full state feedback and the process is repeated.  The 
control sequence calculated by the model predictive controller contains control inputs at 
increments of ∆ s.  Linear interpolation is applied to determine control inputs between 
increments of ∆ s. 

It is important to note that the controls resulting from the earlier calculations are expressed in the 
fixed plane frame, as per assumption number 1 in the linear theory section of this report.  To be 
applied to the canards, the control inputs must be converted to the conventional body fixed 
reference frame. 

Each time the Mach number is updated in the linear model, the matrices A, B, and F are updated 
as well.  This in turn requires updating of the gain matrices.  The size of each of these matrices, 
and hence the computational time required to calculate them, is governed by the length of the 
prediction horizon.  Obviously, frequent updates to the linear model and a long prediction 
horizon provide greater accuracy in the predictor and more efficient control.  These observations 
are tempered with the need to limit the computational demand placed on the onboard processor. 

5. Results 

To establish the utility of the model-predictive controller in a projectile application, a 4.5-ft long 
fin-stabilized projectile is considered.  The projectile has a total weight of 22.9748 lb, a center of 
gravity location of 2.5 ft from the base, and four tail-mounted stabilization fins.  The roll and 
pitch inertia of the body are 0.0057 and 1.35 slug-ft2, respectively.  A set of controllable canards, 



13 

which alter the aerodynamic forces and moments, are located 4.25 ft from the base of the 
projectile. 

To model uncertainty in launch conditions, which is a primary cause of dispersion, the initial 
pitch and yaw rates, pitch and yaw angles, and body velocities are all considered to be normally-
distributed random numbers with means and standard deviations that are representative of actual 
launch uncertainties.  The values chosen are shown in table 1. 

Table 1.  Initial condition uncertainty parameters for dispersion analysis. 

Initial Condition Mean Standard Deviation 
Pitch angle (θ) 0.1 rad 0.01 rad 
Yaw angle (ψ) 0.0 rad 0.01 rad 
Pitch rate (q) –0.18 rad/s 2.0 rad/s 
Yaw rate (r) 0.0 rad/s 2.0 rad/s 

x body velocity (u) 1143.3797 ft/s 15 ft/s 
y body velocity (v) –0.00002502 ft/s 3 ft/s 
z body velocity (w) 0.375346 ft/s 3 ft/s 

The desired trajectory is chosen as that which the projectile would follow in the absence of 
uncertainty with initial conditions of  x 0 ,  y0 ,  z0 , ψ 0 ,φ0 , and  r0  = 0, θ0  = 0.1 rad, 0u  = 1143.38 
ft/s,   v0 = –2.502x10-5  ft/s,   w0 = 0.375 ft/s,  p0  = 51.5 rad/s, and  q0  = –0.18 rad/s.  The target 
location is chosen as x = 6216.613 ft, y = 0.261 ft, and z = 0.0 ft.  Figure 3 shows typical 
dispersion results for 50 sample trajectories with no control applied and initial condition 
perturbations as described earlier.  The circular error probable (CEP) shown in the figure is based 
on a 50% hit criterion; that is, the CEP is defined as the minimum radius of a circle centered at 
the mean impact point and containing at least 50% of the shot impact points.  With no control 
applied, the CEP is 106 ft.  For reference, a second CEP is shown, which, instead of being 
centered at the mean impact point, is instead centered at the target location.  A 50% hit criterion 
is still used.  The second CEP has a radius of 113.5 ft. 

Figure 4 shows the dispersion results with model-predictive control applied.  The prediction 
horizon, pH , is chosen as 50.  The error weighting matrix, Q , is chosen to be a function of range 

as follows: 
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Figure 3.  Uncontrolled dispersion (CEP = 113.5 ft centered at mean impact point). 

in which q  is chosen, in this case, to be 0.5.  By defining Q  in this manner, the error weighting 
is increased quadratically as the projectile flies downrange.  This prevents the tendency for the 
controller to attempt to force the projectile onto the desired trajectory immediately after launch, 
leading to a large initial control input followed by subsequent control inputs of nearly zero.  In 
addition, the control weighting matrix, R , is defined to be  

 

0 0 0 0
0 1 0 0 0
0 0
0 0 2 0
0 0 0 1

p

p

H
H

R r

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

% # #
…
…

, (48) 

where r  is chosen as 2.0 in this case.  By defining R in this manner, the current control value is 
weighted        times heavier than the control value at the end of the prediction horizon.  This 
prevents large controls from being chosen at the beginning of an update interval, even if 
significant error is present.  The model update interval for the case shown in figure 2 is 1000 arc 
lengths, and the arc length step size, ∆ s, is 20.  These parameters provide a good baseline from 
which to begin examining the performance of the model-predictive controller.  Figures 5 and 6 
show a typical controlled and uncontrolled trajectory with the model predictive control 
parameters set listed earlier. 

pH
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Figure 4.  Controlled dispersion (CEP = 0.02 ft centered at mean impact point). 

 

 

Figure 5.  Typical altitude vs. range. 
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Figure 6.  Typical cross range vs. range. 

The model-predictive controller provides a very significant reduction in the CEP—from 106 ft, 
in the uncontrolled case, to 0.02 ft (or less than 1/4 in) with control applied.  It should also be 
noted that the mean impact point is almost 0.06 ft, or ~0.75 in, above the target location.  In the 
cross-range direction, however, the mean impact point is only 0.0085 ft away from the target.  
This bias error in the z-direction can be attributed directly to errors in the linear model used in 
the predictor.  One of the primary assumptions upon which projectile linear theory is based is 
that the projectile maintains a small angle of attack.  As the target is approached, the angle of 
attack of the projectile is forced to a small, nonzero number.  Though it isn’t necessarily in 
violation of the small angle of attack assumption, it is enough to cause a small deviation between 
the trajectory predicted with the linear model and that which is arrived at by integrating the full 
six-degree-of-freedom, nonlinear equations.  This error is demonstrated by plotting the error 
between the validated, full six-degree-of-freedom, nonlinear trajectory, which is solved using a 
fixed step, 4th order Runge-Kutta method, and the linear theory trajectory solution.  The linear 
solution is corrected to match the nonlinear solution every 1000 arc lengths to mimic flight 
control system feedback.  The control input is set equal to zero in both cases and the initial 
conditions are set to match those used in creating the desired trajectory.  Figure 7 shows the 
linear theory error as a function of arc length in the x, y, and z directions.  

Note that the error is of the same order of magnitude near the end of the trajectory as the 
variation of the mean impact point in the CEP plot.  It should also be noted that the error is  
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Figure 7.  Error between linear and nonlinear trajectory solutions. 

greatest at the beginning and end of the flight, where the trajectory is furthest from horizontal.  
At the midpoint of the trajectory, where the path of flight is nearly flat and the projectile angle of 
attack is nearly zero, the error in all three spatial directions also becomes very close to zero. 

Figure 8 shows the required control inputs for the trajectory shown in figures 3 and 4.  The 
magnitudes of the control inputs required to achieve the shown degree of tracking are attainable 
for a set of nose-mounted canards. 

Great care must be taken when choosing the gain values, q  and r , such that the control 
values, 0YC  and 0ZC , never exceed approximately one.  Such large control inputs violate the 
small angle of attack assumption upon which the linearized model is based.  As a result, the 
linear model no longer accurately approximates the true, nonlinear system, and the controller 
loses its ability to accurately predict future states.  When the system is provided with state 
feedback from the IMU under these circumstances, there are very large errors and the controller 
subsequently attempts to choose a large control value to compensate.  Within one to two update 
intervals, the error becomes large enough that control saturates. 

Other applications of model predictive control, such as that discussed by Mei et al. (2), use an 
iterative scheme to set a maximum control input value.  In the application being discussed, where 
speed of control computation is extremely critical, iteration is not practical.  If the processor is 
occupied by an iterative routine while the projectile continues to fly downrange, control is lost.   
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Figure 8.  Required control inputs for a typical trajectory. 

A second option is to simply clip the control values at the maximum allowable value.  This, too, 
presents problems as future controls are calculated under the assumption that all previous 
controls were applied exactly as calculated.  When this clipping scheme is attempted, the control 
begins oscillating rapidly between both allowable extremes, quickly resulting in instability. 

The results discussed earlier assume perfect sensor feedback, which in reality can never be 
achieved.  In practice, sensors possess error created by both bias and noise.  These are modeled 
in the simulation by choosing normally-distributed random numbers with means of zero and 
standard deviations that are representative of commonly used IMU sensors.  A bias value is 
randomly chosen for each sensor at the start of every flight simulation and retained throughout 
that particular simulation.  In addition, a noise value is randomly chosen for each sensor every 
time feedback is implemented.  Both the bias and noise value are added to the sensor readings at 
each update interval.  The sensor bias and noise standard deviations used are summarized in 
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table 2.  All subsequent results displayed in this report employ sensor bias and noise applied in 
this way. 

Table 2.  Sensor noise and bias values. 

Sensor Function Bias Standard Deviation Noise Standard Deviation 
x and y position (ft) 0.52  0.52  

z position (ft) 1.18  1.18  
x and y velocity (ft/s) 0.10  0.08  

z velocity (ft/s) 0.16  0.13  
roll, pitch, and yaw angles (deg) 0.3  0.3  
roll, pitch, and yaw rates (deg/s) 0.05  0.01  

Sensor noise and bias become the dominant sources of error when they are applied in this 
application.  As the standard deviation of the sensor noise remains constant throughout the 
projectile flight, it no longer makes sense to define the error weighting matrix as a function of 
projectile range.  Doing so, while keeping the value of q  low enough to avoid violating the small 
angle of attack assumption near the end of the trajectory, unnecessarily limits the control action 
near the beginning of the trajectory.  The error weighting matrix, Q , is instead defined simply as 
the identity matrix multiplied by the constant gain value, q .   

Figure 9 shows dispersion results with sensor noise and bias applied.  The prediction horizon, Hp, 
is again 50.  The error gain, q, is set to 1.  The control weighting matrix, R, is defined as shown 
in equation 48 with the gain value, r , equal to 0.2.  The update interval is 1000 arc lengths and 
the arc length step size, ∆ s, is 20.  As a direct result of the sensor uncertainty, the CEP radius is 
increased to 2.1 ft. 

In figure 10, the effects of changing both the control gain, r , and the prediction horizon, Hp, are 
shown.  The model update interval is held constant at 1000 arc lengths and the arc length step 
size is held constant at 20 arc lengths throughout all of the simulations shown in figure 10.  In 
addition, the error weighting matrix, Q, is defined as the identity matrix with the error gain, q, 
equal to 1.  The control weighting matrix, R, is again defined as shown in equation 48.   The 
control gain, r, is varied from 0.025 to 10 with the prediction horizon held constant.  The process 
is repeated four times with values of 25=PH , 50=PH , 75=PH , and 100=PH . 

As the value of r is increased, additional weight is given to the value of the control in the cost 
function (equation 43).  This in turn forces the magnitude of the chosen control values to be 
smaller, which provides less control authority.  As would be expected, figure 10 shows that 
larger values of r lead to increased dispersion.  However, there is a value of r below which the 
control values are allowed to be too large, leading to violation of the small angle of attack 
assumption and loss of control.  This minimum value of r varies depending on the length of the 
prediction horizon.  In figure 10, the lowest attempted values of r which resulted in a controllable 
trajectory are shown as the first data point for each series. 
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Figure 9.  Controlled dispersion with sensor bias and noise applied (CEP = 2.1 ft 
centered at mean impact point). 

 

Figure 10.  Controlled dispersion results as the control gain, r, is varied. 
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It is also apparent from figure 10 that, for a given value of r, there is a direct relationship 
between the length of the prediction horizon and the amount of impact point dispersion.  
Allowing the controller to take into account an increased number of the predicted states, as a 
longer prediction horizon does, leads to more intelligent control choices.  It also significantly 
increases the amount of computation required at each update interval, necessitating a more 
expensive onboard processor. 

A similar study was performed to investigate the effect of the length of the linear model update 
interval on the dispersion radius.  The error weighting matrix, Q, is again the identity matrix with 
the error gain, q, set to one.  The control weighting matrix, R, is defined as shown in equation 48 
with the gain value, r, equal to 0.5.  The arc length step size is again 20 arc lengths.  The linear 
model update interval is varied from 100 to 2000 while holding the value of the prediction 
horizon constant.  As before, the process is repeated four times with prediction horizon values of 

25=PH , 50=PH , 75=PH , and 100=PH .  The results are shown in figure 11. 
 

 

Figure 11.  Controlled dispersion results as the linear model update 
interval is varied. 

Longer linear model update intervals lead to an increase in dispersion.  This increase becomes 
more apparent for update intervals greater than 1000 arc lengths.  For prediction horizon lengths 
of 25 and 50 arc length steps, update intervals greater than 1600 arc lengths led to a loss of 
control.  This results from the linearized model deviating too far from the true, nonlinear system.  
Upon update, the error becomes very large and a large control is chosen to compensate, which in 
turn violates the small angle of attack assumption and causes further error in the linear model.  
Reducing the error gain, q, or increasing the control gain, r, would prevent this scenario from 
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occurring.  However, the tradeoff would be a reduction in control authority and an increase in 
dispersion. 

The final study investigates the effects of the length of the step size, ∆ s, used by the controller to 
propagate the linear model forward.  The prediction horizon is held constant at 50 steps and the 
error weighting matrix is the identity matrix with the gain, q , equal to one.  The control 
weighting matrix is defined as shown in equation 48.  Four values for the arc length step size  
( ∆ s = 5, ∆ s = 10, ∆ s = 20 , and ∆ s = 40) are used while the control gain, r , is varied over the 
range which provided suitable control inputs for each step size.  The results can be seen in 
figure 12. 

 

Figure 12.  Controlled dispersion results as the arc length step size is 
varied. 

As with any discrete, linear model, the length of the step size has no effect on the accuracy of the 
model itself.  However, as evidenced by figure 12, the length of the arc length step size does 
have an effect on the overall accuracy of the controller.  This results from an interplay between 
two competing effects.  The prediction horizon length is measured in the number of steps into the 
future that are used in the calculation of the optimal control.  Therefore, for a given prediction 
horizon length, increasing the arc length step size allows the predictor to take into account state 
values farther into the future.  However, control values are only calculated at each step 
increment, with control values between calculation steps derived from linear interpolation.  A 
large step size can therefore lead to a decrease in resolution of the controller.  For arc length step 
sizes of 5, 10, and 20, these effects do little more than change the acceptable range of gains, 
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shifting the lines to the right on figure 12 for increasing values of ∆ s.  However, at ∆ s = 40, the 
controller becomes unable to provide the necessary amount of oscillation and dispersion is 
increased dramatically. 

6. Conclusions 

This report develops a method for applying model predictive control, a proven and effective 
control technique, to a smart projectile application.  The control law is shown to dramatically 
reduce the impact point dispersion caused by launch disturbances.  The method uses full state 
feedback to create a linearized model of the projectile and quickly predict the future states of the 
system.  These calculations can be performed by a relatively inexpensive onboard processor.  As 
the predicted states depend on the states provided by the feedback loop, sensor accuracy is very 
important to the performance of the system and was shown here to be the limiting factor in 
dispersion reduction. 

Considerable opportunities exist for the control system designer to tune the model-predictive 
controller based on the desired application.  It was shown that the length of the prediction 
horizon has a considerable effect on the dispersion radius, with a longer prediction horizon 
leading to a decrease in dispersion.  However, a longer prediction horizon increases the size of 
the matrices used in the control calculation, which subsequently necessitates an increase in the 
processing power required to perform control calculations in a sufficiently short period of time.  
Shorter linear model update intervals lead to a decrease in dispersion as well, but with a similar 
increase in the amount of onboard computation required.  The length of the arc length step size 
was shown to have little effect on dispersion as long as it remained below 20 arc lengths.  
Control and error gains should be adjusted to allow sufficient control authority without violating 
any of the assumptions upon which linear theory is based.  No iterative scheme is built into the 
controller to limit the size of the control inputs, so the control system designer should run a series 
of simulations prior to launching a projectile to ensure that the control and error gains are 
properly adjusted. 
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List of Symbols, Abbreviations, and Acronyms 

ρ : Air density 

NAC : Normal force aerodynamic coefficient 

MQC : Pitch rate damping moment aerodynamic coefficient 

0XC : Aerodynamic drag coefficient in direction parallel to projectile motion 

0 0,Y ZC C : Aerodynamic trim coefficients perpendicular to projectile axis of symmetry 

DDC : Roll moment from fin cant 

YPAC : Magnus force 

LPC : Roll damping moment 

D : Projectile characteristic diameter 

,P RI I : Projectile precesional and rotational inertia 

m : Projectile mass 

p, q, r : Angular velocity vector components expressed in the body fixed reference 
frame 
 

, ,ψ θ φ : Euler yaw, pitch, and roll angles 

SL∆ : Stationline distance from the projectile center of pressure location to the CG 

mSL∆ : Stationline distance from the projectile Magnus force location to the CG 

CSL∆ : Stationline distance from the control canard location to the CG 

u, v, w : Translation velocity components of the projectile center of mass resolved in the 
body fixed reference frame 
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x, y, z : Position vector components of the projectile mass center expressed in the 
inertial reference frame 
 

V  : Magnitude of the mass center velocity 

, ,L M N : Total external applied moment on the rocket about the mass center expressed in 
the rocket reference frame 
 

, ,X Y Z : Total external applied force on the rocket expressed in the rocket reference 
frame 
 

pH : Prediction horizon used in model predictive controller 

s : Dimensionless arc length 
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